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J. Phys. A: Math. Gen. 14 (1981) 915-920. Printed in Great Britain 

On the structure of ultraviolet divergences in the vacuum 
region of quantum el-ectrodynamics 

B DragoviC and B SazdoviC 
Institute of Physics, PO Box 57, llOOl-Beograd, Yugoslavia 

Received 24 July 1980, in final form 6 November 1980 

Abstract. Starting from a finite OED in the Johnson-Baker-Willey formulation, structures 
of uv divergences of (OlSlO) in QED arc analysed. To obtain the finite QED in the vacuum 
region several eigenvalue conditions for the bare electron charge are introduced. 

1. Introduction 

It is well known that the usual perturbation approach to quantum electrodynamics 
(QED) leads to ultraviolet (UV) divergences when calculating the S-matrix physical 
processes. This is true as well for the S-matrix vacuum expectation value (VEV). 
Although these divergences can be removed from QED by the renormalisation pro- 
cedure, determining their real origin is of fundamental significance not only for QED, 
but also for quantum field theory. Even before applying the renormalisation pro- 
cedure, there have been many attempts at obtaining the S-matrix elements without the 
uv divergences. One of the most attractive approaches to finite spinor QED is that of 
Johnson, Baker and Willey (1964, Johnson and Baker 1973 and references therein), 
which is further discussed by Adler (1972). Their basic idea is that the usual pertur- 
bation treatment of QED is not mathematically adequate and that one must look for a 
convenient modification of the perturbation approach. Within their programme, the 
electron propagator, the photon propagator and the vertex function become finite. 
However, two conditions must be imposed: (1) the electron mass is completely dynamic 
in origin and (2) the bare fine-structure constant should obey the definite eigenvalue 
condition, i.e. f ( a o )  = 0. 

Extrapolation of the Johnson-Baker-Willey (JBW) approach to other quantum Field 
model theories has not yet yielded the desired results. The scalar QED in the Klein- 
Gordon formalism has been investigated (Fry 1973) more than any other model. In 
scalar electrodynamics, three eigenvalue conditions for asymptotic coupling a. have to 
be introduced and Fry’s conclusion is that ‘a completely finite, closed theory of scalar 
electrodynamics is probably internally inconsistent’. In this paper we analyse the 
necessary conditions for the possible existence of a finite spinor QED in the vacuum 
region. Although the VEV of the S-matrix is not relevant to the physical meaning of 
QED, it is still important to know its structure (particularly its uv divergences) in the 
modified perturbation approach. This can be used as a test of the applicability of the 
JBW programme to the larger region of electromagnetic processes (although purely 
theoretical). 
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With the help of the functional derivation method, we shall first derive two general 
formulae which express the exponent of (OlSlO) as the integral over the vacuum 
polarisation effects (13) or the electron self-energy effects (14). Then, for finiteness, 
some conditions on the coupling constant are introduced for both cases: (1) the physical 
electron mass m = 0 and (2) the physical electron mass m # 0. 

2. Derivation of general formulae 

The vacuum expectation value of the S-matrix is defined as the vacuum-vacuum 
S-matrix element. We shall denote it by 

(OjS /O)  = (S)o = so. 
The VEV of the S-matrix of QED in the presence of an external current J’”(x) is 

(:eoj”(x)A,(x): +J’”(x)A,(x)) dx (1) 

wherejw(x) = $(x)r”G(x) is the current of the electron, T and : : are chronological and 
normal products respectively, and dx = dxo dxl  dx2 dx3. We shall look for a connec- 
tion between So and the electron and the photon Green functions. These have already 
been investigated in the JBW programme. Note that the S-matrix element introduced in 
(1) is a function of a bare charge eo and functional of the external current J ” ( x ) .  
Differentiation of (1) with respect to eo gives 

i 5 dx(T(j”(x)A,(x)S(J)))o.  
aeo 

where 

U, ( z  I J )  = ( l / so (J ) ) (T (A , ( z )S (J ) ) )o .  

The expression (2) with the use of (3) and ( 5 )  can now be written as 

To transform further the first term on the right-hand side in ( 6 ) ,  we shall introduce 
derivation by U,. Using the limit U, + 0 ( J ,  + 0), we obtain 
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where 

P ( x ,  y ,  Z )  = -SG-’(x, y) /eoSU,(z) .  

Inserting (7) and (8) in (6) and accounting for the limit U, + 0 completely, we obtain 

- -ieo dx dyD,,(x, y )  Tr(y@G(x, x’)T”(x‘, y f ,  y)G(y‘,  x))  dx’ dy’, 

(9) 

J 1 aso 
So aeo 

So(eo = 0) = 1. 

If we define L by L = -i In So, then the last equation can be written in either of the 
following forms: 

(10) 

(11) 
aL i 
-=- J dx dy ~ r ~ x ,  y ~ y ,  x)), 
aeo eo 

L(eo = 0) = 0. 

Here, we have introduced the vacuum polarisation tensor rwLy(x ,  y )  and the electron 
self-energy X(x, y ) .  Equation (10) expresses the S-matrix VEV through the vacuum 
polarisation effects, and equation (1 1) expresses the same VEV, but through the electron 
self-energy effects. 

The result which is obtained analytically in (10) and (11) can be found using the 
diagram technique. The relevant Feynman diagrams are shown in figure 1. Firstly, it is 
important to see which diagrams correspond to the quantity L in the expansion 
(O/S lO)  = exp(iL). Factors e: are introduced for convenience. An interplay of diagrams 
of DFLY(x, y )  and rWy(x ,  y )  or G(x, y )  and X(x, y ) ,  the following equations can be 
written: 

( n  = 1 , 2 , 3 , .  . .). 
Applying the operator eo a laeo  to the last equations, summing over n, and using the 
double summation, we obtain equivalent equations, which are expressions (10) and 

We shall rewrite equations (10) and (1 1) in the momentum representation, using the 
(11). 

corresponding Fourier transforms given by 

After some standard calculations we obtain 
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r 1 

( c l  

Figure 1. ( a )  Diagram representation of expansion -iL = +&&+. . . . One 
diagram in is taken twice in order to get the multiplying factor e 3 4 .  ( b )  Diagrams for 
vacuum polarisation quantities T @ ' ( x ,  y )  and D,u(x, y) .  (c) Graphical expansion of elec- 
tron self-energy X(x, y )  and electron propagator G(x, p).  

7rW*"(q) = (g( 'y  -q@qY/q2)7r(q2) .  
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We have obtained formulae which express relations between the quantity L, the 
characterising VEV of the S-matrix and quantities D or G. These are known from 
calculations of real processes. 

3. Discussion 

In relation to expressions (13) and (14), according to the JBW programme and their 
possible future uses, there are two important points. First, the electric charge is a 
positive solution to the definite equation f (eo)  = 0. Second, the bare electron mass must 
vanish, i.e. mo = 0. We can identify the upper limit in (13) and (14) with eo, which is a 
solution to the JBW eigenvalue condition. Now we have finite integrands only at the 
end-points of the charge integration interval 0 s U s eo, because the vacuum polarisa- 
tion function .ir(q2, U )  (Johnson and Baker 1973) is 

where .irC(q2, U )  is a finite part and f ( u )  # 0, except for U = 0 and U = eo. We initially 
introduced infinity into the exact photon propagator when we differentiated with 
respect to electric charge. To clarify equations (13) and (14) in relation to their finite 
integrands, we must redefine these integrands. This can be done by maintaining only 
the finite part .irc(q2, U )  of the infinite vacuum polarisation function .ir(q2, U). Hence, 
for future practical use, integrands in (13) and (14) can be treated as finite functions of 
the electric charge U for all points of the interval 0 s U s eo, as well as finite functions of 
momentum q2. 

The infinities which still can occur, in expressions (13) and (14), are consequences of 
the momentum integration in the asymptotic space-like region. Since the bare electron 
mass must vanish ( m o  = 0), the parameter p can be created with the dimension of mass. 
We distinguish three cases (DragoviC et a1 1978): (a) w = 0, (b) f~ f 0, m = 0 and (c) 

# 0 ,  m # 0, where m is the physical electron mass. Case (a) corresponds to the trivial 
solution of the Schwinger-Dyson equation for the electron propagator where, because 
of scale invariance, the exact electron propagator is proportional to the free propagator. 
It can be finite only when 

du loeo Ao(u)-= 0 
U 

where A o ( u )  is defined as 

Let us introduce the function for cases (b) and (c): 

This is the integrand in (13). After integration over momentum q we obtain 

where G ( u )  is a finite part and H is an infinite part having different divergences up to 
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fourth order. Several eigenvalue conditions for the electric charge should be intro- 
duced to eliminate this infinite part. The question arises as to the intrinsic consistency of 
these conditions, including the JBWf(eo) condition. We regard this as an open question. 

When the photon or electron propagators are known to a good approximation, 
equations (13) and (14) could be of great interest for practical calculations. An analysis 
of eigenvalue conditions obtained in this way could provide more insight into the nature 
of electric charge. We had previously accounted for the asymptotic behaviour of the 
solution to the Schwinger-Dyson equation for the electron propagator in the first JBW 

approximation (DragoviC et a1 1978). We conclude that the only bare electric charge 
for which the divergent part vanishes is eo = 0. Perhaps higher-order approximations 
will give more reasonable results. 

Acknowledgment 

We thank Professor Z MariC for his interest in this work and very useful discussions. 

References 

Adler S L 1972 Phys. Reo. D 5 3021-47 
DragoviC B G, Mavlo D P and Filippov A T 1978 Fizika 10 51-74 
Fry M P 1973 Phys. Rev. D 7 423-49 
Johnson K and Baker M 1973 Phys. Reo. D 8 1110-22 
Johnson K, Baker M and Willey R 1964 Phys. Reo. 136 B1111-9 


